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1. Introduction 

Let G be a simple, connected graph with n-vertices and m-edges. di is the degree of 

the vertex vi, where di is the number of edges incident to the vertex vi. The graph G is 

a regular graph, where all its vertices are equal to degree r. For undefined 

terminologies we refer [7]. 

A molecular graph is a graph in which the vertices correspond to the atoms and 

edges corresponds to the bonds. Chemical graph theory is a branch of mathematical 

chemistry which has an important effect on the development of the chemical 

sciences. 

The adjacency matrix A(G) of a graph G will be (0, 1) matrix and is defined as 
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If  1,  2,  3, …,  n are the eigen values of A(G). Then the energy of a graph G is defined 

as the sum of absolute values of the eigen values of adjacent matrix of graph G. This 

concept was introduced by I. Gutman in [4]. 
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The degree product adjacency energy [EDPA(G)] is defined as follows [8],  

The DPA(G) is the degree product adjacency matrix and is defined as, 
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The degree product adjacency matrix DPA(G) is a real symmetric matrix and its eigen 

values are  1,  2,  3, …,  n. The order of eigen values be  1   2    3   …   n. The 

similar way of adjacency energy, the degree product adjacency energy of a graph 

defined as, 
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Let D(G) = [dij] be a diagonal matrix and is defined as, 










. if            0

, if   )deg(

ji

jiv
d

i

ij  

The Laplacian matrix of a graph G is defined as L(G) = D(G) − A(G). The eigen 

values µ1 ≥ µ2 ≥µ3 ≥ ... ≥ µn are obtained from the matrix L(G). 

 

The Laplacian energy of G is defined as [5],   ( )  ∑ |   
  

 
| 

   , where n and 

m are the number of vertices and edges respectively. 

Motivated by the work of [5], we introduced the concept of Laplacian energy for the 

degree product adjacency matrix, which is defined as follows 

 

Let G be a simple, connected graph with n-vertices v1, v2, ..., vn and di be the degree 

of the vertex vi, ∀i = 1, 2, ..., n. Then the Laplacian degree product adjacency matrix 

[LDPA(G)] of a graph G is LDPA(G) = D(G) − DPA(G). The eigen values γ1 ≥ γ2 ≥ γ3 ≥ 

... ≥ γn are obtain from the matrix LDPA(G). 

 

Analogous to the LE(G), the LEDPA(G) of a graph G defined and is denoted as follows 
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where       
  

 
 , ∀i = 1, 2, ..., n. 

where n and m are the number of vertices and edges of graph G respectively. 

 

The Cauchy-Schwarz inequality [1] states that if (a1, a2, a3, …, an) and (b1, b2, b3, …, 

bn) are real n-vectors then,
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In this article, we establish the results on bound for the largest eigen value of LDPA(G) 

and also obtain the lower bounds for the Laplacian energy of degree product 

adjacency matrix of a regular graph G. 

2. Results 

 

To present the complete results, some important theorems which are used throught out 

the paper are mentioned below. 

 

Theorem 2.1. [11] Suppose ai and bi, 1  i   n are positive real numbers, then 
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Where 
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Theorem 2.2. [10] Let ai and bi, 1  i   n are nonnegative real numbers, then 
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where M1M2 and m1m2 are defined similarly to Theorem 2.1. 

 

Theorem 2.3. [2] Suppose ai and bi, 1  i   n are positive real numbers, then 
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where a, b, A and B are real constants, that for each i, 1  i   n, a ai   and 

b bi    Further, 
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Theorem 2.4. [3] Let ai and bi, 1  i   n are nonnegative real numbers, then 
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where r and R are real constants. So that for each i, 1  i   n holds rai  bi  ai 

 

2.1 Bounds for the largest eigen value of LDPA(G) 

Lemma A. Let G be regular graph with n vertices and m edges. Then the eigen values 

obtained from LDPA(G) matrix satisfies the following relations 
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Where ∑   
  

    is the trace(DPA(G))
2 

[9] and   ( )  ∑ (  )
  

   , is the first Zagreb 

index [6]. 
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Lemma B. Let   , ∀i = 1, 2, ..., n be defined as above by Eq. (2). Then the following 

satisfies  
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Proof. Proof is similar to the proof of Lemma A. 

 

Theorem 2.5.  If  G be a regular graph with n-vertices, then 
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Proof. Consider the regular graph G with n-vertices. Let LDPA(G) be the Laplacian 

degree product adjacency  matrix of graph G and  1,  2,  3, …,  n are the eigen 

values, where  1 is the largest eigen value and the bound for  1 is calculated by using 

cauchy-schwarz inequality i.e.,
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Let ai =1 and bi =  i , ∀i = 2, 3, …, n then the inequality becomes, 
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From Lemma B(i), 
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And from Lemma B(ii) 
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Substituting (2) and (3) in (1), we get 
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The equality relation for  1 holds for all complete (Kn) graphs. 
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Theorem 2.6.  If G be a regular graph with n-vertices, then 
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Proof. Consider a regular graph G with n-vertices. Let LDPA(G) be the Laplacian 

degree product adjacency matrix of a graph G and  1,  2,  3, …,  n are the eigen 

values. Now we consider the cauchy-schwarz inequality to prove the theorem, 

 Proof for Right hand side bond: 

Let us assume that ai = 1 and bi =|  i|, ∀  = 1, 2, …, n. 
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On simplification, by using the Lemma B. 
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 Proof for Left hand side bond: 

We know that, 
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By using the Lemma B, we conclude that 
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From equation (6) and (7), 
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2.2  Lower bounds for the Laplacian degree product adjacency energy 

[LEDPA(G)] 

 

Theorem 2.7. Let G be a regular graph with n-vertices and m-edges and suppose   1| 

 | 2| | 3|  … | n| are the eigen values, then the following inequality holds. 
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Proof. Consider a regular graph G with n-vertices and   1|  |  2| |  3|  … | n| 

are the eigen values, where   1| and   n| are the maximum and minimum eigen 

values of   i|'s respectively. 

We have the inequality by the theorem 2.1, 
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Assume ai =1, bi=  i|, M1M2=  1| and m1m 2=| n| then, 
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From Lemma B, 
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Theorem 2.8. Let G be a regular graph with n-vertices, then the following inequality 

holds
 

 21

2

||||
4

2)( nDPA

n
nKGLE    

Proof. Consider a regular graph G with order n and size m. Let   1|  |  2| | 3|  

… |  n| be the eigen values, where   1| and    | are the maximum and minimum 

eigen values respectively. 

From Theorem 2.2 we have the inequality, 
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Assume ai = 1, bi =   i|, M1M2 =  1| and m1m2 =   n| in the above inequality, 
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From Lemma B, 
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Theorem 2.9. Let G be a regular graph with n-vertices, then the following inequality 

holds. 
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Proof. Consider a regular graph G with order n and size m. Let   1|  |  2| | 3|  

… | n| be the eigen values, where   1| and   n| are the maximum and minimum 

eigen values respectively. 

Consider inequality from the Theorem 2.3, 
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Now assume that ai = bi =   i|, A = B =    1| and a = b =    n|, then the inequality 

reduces to 
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From Lemma B, 
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Theorem 2.10. Let G be a regular graph with n-vertices, then the following inequality 

holds. 
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Proof. Consider a regular graph G with order n and size m. Let   1|  |  2| |  3|  

… |  n| be the eigen values, arranged in non-increasing order, where   1| and   n| 

are the maximum and minimum eigen values respectively. 

We make use of the inequality from the Theorem 2.4, 
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Assume bi =   i|, ai = 1, r =   n| and R =   1|, then the inequality implies to 
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From Lemma B, 
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Conclusion:  In this article, we compute the results on lower bounds for the Laplacian 

degree product adjacency energy. Further the eigen values of degree product adjacency 

matrix and laplacian degree product adjacency matrix are numerically same but they 

differ in their sign (i.e., positive and negative) and we consider the modulus to calculate 

the energy for both degree product adjacency matrix and Laplacian degree product 

adjacency matrix. Hence the energy become same for both DPA(G) energy and 

LDPA(G) energy i.e., EDPA(G) = LEDPA(G), for all regular graph G. Also the result is 

true for lower bounds. 
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